$J$-CLASS SEMIGROUP OPERATORS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J-class Operators and Hypercyclicity

The purpose of the present work is to treat a new notion related to linear dynamics, which can be viewed as a “localization” of the notion of hypercyclicity. In particular, let T be a bounded linear operator acting on a Banach space X and let x be a non-zero vector in X such that for every open neighborhood U ⊂ X of x and every non-empty open set V ⊂ X there exists a positive integer n such tha...

متن کامل

J -self-adjointness of a Class of Dirac-type Operators

In this note we prove that the maximally defined operator associated with the Dirac-type differential expression M(Q) = i ( d dx Im −Q −Q − d dx Im ) , where Q represents a symmetric m × m matrix (i.e., Q(x) = Q(x) a.e.) with entries in L loc (R), is J -self-adjoint, where J is the antilinear conjugation defined by J = σ1C, σ1 = ( 0 Im Im 0 ) and C(a1, . . . , am, b1, . . . , bm) = (a1, . . . ,...

متن کامل

A semigroup of operators in convexity theory

We consider three operators which appear naturally in convexity theory and determine completely the structure of the semigroup generated by them.

متن کامل

A class of J-quasipolar rings

In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Pure and Apllied Mathematics

سال: 2016

ISSN: 1311-8080,1314-3395

DOI: 10.12732/ijpam.v109i4.9